EEE4STM32/ee.c

239 lines
7.8 KiB
C
Raw Normal View History

2020-05-12 06:05:35 +02:00
#include "ee.h"
#include "eeConfig.h"
#include <string.h>
#define PAGE 0
#define SECTOR 1
#if defined(STM32F103xB)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 1024
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_FLASH_BANK FLASH_BANK_1
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 127)
#error "Please Enter currect address, maximum is (127)"
#endif
#endif
#if defined(STM32F103x8)
2020-05-12 06:12:35 +02:00
#define _EE_MAX_SIZE 1024
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_MAX_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_FLASH_BANK FLASH_BANK_1
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 63)
#error "Please Enter currect address, maximum is (63)"
#endif
#endif
#if defined(STM32F103xC)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 2048
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_FLASH_BANK FLASH_BANK_1
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 127)
#error "Please Enter currect address, maximum is (127)"
#endif
#endif
#if defined(STM32F103xD)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 2048
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_FLASH_BANK FLASH_BANK_1
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 191)
#error "Please Enter currect address, maximum is (191)"
#endif
#endif
#if defined(STM32F103xE)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 2048
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_FLASH_BANK FLASH_BANK_1
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 255)
#error "Please Enter currect address, maximum is (255)"
#endif
#endif
#if defined(STM32F030x4) || defined(STM32F042x4) || defined(STM32F070x4)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 1024
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 15)
#error "Please Enter currect address, maximum is (15)"
#endif
#endif
#if defined(STM32F030x6) || defined(STM32F042x6) || defined(STM32F070x6)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 1024
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 31)
#error "Please Enter currect address, maximum is (31)"
#endif
#endif
#if defined(STM32F030x8) || defined(STM32F042x8)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 1024
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 63)
#error "Please Enter currect address, maximum is (63)"
#endif
#endif
#if defined(STM32F070xB)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 2048
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 63)
#error "Please Enter currect address, maximum is (63)"
#endif
#endif
#if defined(STM32F070xC)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE 2048
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08000000) | (_EE_SIZE * _EE_USE_FLASH_PAGE_OR_SECTOR))
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 127)
#error "Please Enter currect address, maximum is (127)"
#endif
#endif
#if defined(STM32F405xx) || defined(STM32F407xx) || defined(STM32F415xx) || defined(STM32F417xx)
2020-05-12 06:12:35 +02:00
#define _EE_SIZE (1024 * 128)
2020-05-12 06:05:35 +02:00
#define _EE_ADDR_INUSE (((uint32_t)0x08020000) | (_EE_SIZE*(_EE_USE_FLASH_PAGE_OR_SECTOR - 5)))
#define _EE_FLASH_BANK FLASH_BANK_1
#define _EE_VOLTAGE_RANGE _EE_VOLTAGE
#define _EE_PAGE_OR_SECTOR PAGE
#if (_EE_USE_FLASH_PAGE_OR_SECTOR > 11)
#error "Please Enter currect address, maximum is (11)"
#endif
#if (_EE_USE_FLASH_PAGE_OR_SECTOR < 5)
#error "Please Enter currect address, minimum is (5)"
#endif
#endif
#if (_EE_USE_RAM_BYTE > 0)
uint16_t ee_ram[_EE_USE_RAM_BYTE / 2];
#endif
//##########################################################################################################
bool ee_init(void)
{
#if (_EE_USE_RAM_BYTE > 0)
return ee_read(0, _EE_USE_RAM_BYTE, NULL);
#else
return true;
#endif
}
//##########################################################################################################
bool ee_format(bool keepRamData)
{
uint32_t error;
HAL_FLASH_Unlock();
FLASH_EraseInitTypeDef flashErase;
#if _EE_PAGE_OR_SECTOR == PAGE
flashErase.NbPages = 1;
flashErase.PageAddress = _EE_ADDR_INUSE;
flashErase.TypeErase = FLASH_TYPEERASE_PAGES;
#else
flashErase.NbSectors = 1;
flashErase.Sector = _EE_ADDR_INUSE;
flashErase.TypeErase = FLASH_TYPEERASE_SECTORS;
#endif
#ifdef _EE_FLASH_BANK
flashErase.Banks = _EE_FLASH_BANK;
#endif
#ifdef _EE_VOLTAGE_RANGE
flashErase.VoltageRange = _EE_VOLTAGE_RANGE;
#endif
if (HAL_FLASHEx_Erase(&flashErase, &error) == HAL_OK)
{
HAL_FLASH_Lock();
if(error != 0xFFFFFFFF)
return false;
else
{
#if (_EE_USE_RAM_BYTE > 0)
if (keepRamData == false)
memset(ee_ram, 0xFF, _EE_USE_RAM_BYTE);
#endif
return true;
}
}
HAL_FLASH_Lock();
return false;
}
//##########################################################################################################
bool ee_read(uint32_t startVirtualAddress, uint32_t lenHalfWord, uint16_t* data)
{
if ((startVirtualAddress + lenHalfWord) > (_EE_SIZE / 2))
return false;
for (uint32_t i = startVirtualAddress ; i < lenHalfWord + startVirtualAddress ; i++)
{
if (data != NULL)
{
*data = (*(__IO uint16_t*)(i + _EE_ADDR_INUSE));
data++;
}
#if (_EE_USE_RAM_BYTE > 0)
if ( i < _EE_USE_RAM_BYTE)
ee_ram[i] = (*(__IO uint16_t*)(i + _EE_ADDR_INUSE));
#endif
}
return true;
}
//##########################################################################################################
bool ee_write(uint32_t startVirtualAddress, uint32_t lenHalfWord, uint16_t* data)
{
if ((startVirtualAddress + lenHalfWord) > (_EE_SIZE / 2))
return false;
if (data == NULL)
return false;
HAL_FLASH_Unlock();
for (uint32_t i = 0; i < lenHalfWord ; i++)
{
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, ((i + startVirtualAddress)) + _EE_ADDR_INUSE, (uint64_t)(data[i])) != HAL_OK)
{
HAL_FLASH_Lock();
return false;
}
}
HAL_FLASH_Lock();
return true;
}
//##########################################################################################################
bool ee_writeToRam(uint32_t startVirtualAddress, uint32_t lenHalfWord, uint16_t* data)
{
#if (_EE_USE_RAM_BYTE > 0)
if ((startVirtualAddress + lenHalfWord) > (_EE_USE_RAM_BYTE / 2))
return false;
if (data == NULL)
return false;
memcpy(&ee_ram[startVirtualAddress], data, lenHalfWord);
return true;
#else
return false;
#endif
}
//##########################################################################################################
bool ee_writeRamToFlash(void)
{
#if (_EE_USE_RAM_BYTE > 0)
if (ee_format(true) == false)
return false;
return ee_write(0, _EE_USE_RAM_BYTE, ee_ram);
#else
return false;
#endif
}
//##########################################################################################################
uint32_t ee_maxVirtualAddress(void)
{
return (_EE_SIZE / 2);
}
//##########################################################################################################